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Background

Background:

Rhizosphere: Area of the soil near roots

Rhizosphere microbiome: Microorganisms / bacteria in the
rhizosphere

Millions of bacteria per gram of soil

Standard rhizosphere microbiome study: Who’s there / abundant?

If we know who’s there we can intervene

Research question (Anderson and Habiger; 2012):

Who’s there vs. who’s relevant (associated with plant
health/productivity)?

Is the abundance = association hypothesis true?
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Illustration of Research Question

Fred is abundant. Is he “productive”?

Habiger, Watts and Anderson Multiple Testing with Heterogeneous Data



Ignore Heterogeneity? Procedure Assessment Comments

Study

Data collection:

1 5 wheat rhizosphere soil samples: Average shoot biomass (g) among
wheat plants in each sample measures productivity

x1 x2 x3 x4 x5

0.86 1.34 1.81 2.37 3.00

2 16s rRNA software: # DNA copies of m = 1, 2, ..., 778 species in
each sample (abundance)

Species m y1m y2m y3m y4m y5m Total (nm)
1 0 1 1 0 5 7
2 9 2 0 0 3 14
...

...
...

...
...

...
...

778 16 10 29 18 13 81

Remark: 6 ≤ nm ≤ 911
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Classical Benjamini and Hochberg (1995)

Step 1: Compute Z -scores / p-values

Model: Ynm ∼ Pois(µnm), log(µnm) = αm + βmxn

Null hypotheses: Hm : βm = 0

Z -scores: Zm = β̂m
S.E .(β̂m)

p-Values: Pm = Pr(|Zm| ≥ |zm|)

Step 2: Define rejection threshold to control FDR

Reject k null hypotheses for k = max{i : P(i) ≤ α i
m
}

Remark: Much work on adaptive BH procedure: Storey et. al (2004),
Nettleton and Liang (2012)
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Bayes - Sun and Cai (2007), Efron (2010)

Step 1: Compute / estimate posterior null probability

Mixture model: Zm ∼ f (z) = π0f0(z) + (1− π0)f1(z)

Local FDR: lFDR(z) = π0f (z)
f (z)

= Pr(Hm true |Zm = z)

Local FDR statistics: lFDRm = lFDR(Zm)

Adaptive: π̂0, f̂1 → ̂lFDRm

Step 2: Define a rejection threshold

Reject k null hypotheses for k = max
{
m :

∑m
i=1

̂lFDR(i) ≤ αm
}
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“Significant”

Question: Which species is discovered?

m Y1m/nm Y2m/nm Y3m/nm Y4m/nm Y5m/nm β̂m nm l̂FDRm Discover
1 0.36 0.50 0.00 0.07 0.07 ? ? ? ?
2 0.15 0.13 0.28 0.25 0.19 ? ? ? ?

Null 0.20 0.20 0.20 0.20 0.20 0 — 1 x
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“Significant”

Question: Which species is discovered?

m Y1m/nm Y2m/nm Y3m/nm Y4m/nm Y5m/nm β̂m nm l̂FDRm Discover
1 0.36 0.50 0.00 0.07 0.07 -1.09 ? ? ?
2 0.15 0.13 0.28 0.25 0.19 0.19 ? ? ?

Null 0.20 0.20 0.20 0.20 0.20 0 — 1 x
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“Significant”

Question: Which species is discovered?

m Y1m/nm Y2m/nm Y3m/nm Y4m/nm Y5m/nm β̂m nm l̂FDRm Discover
1 0.36 0.50 0.00 0.07 0.07 -1.09 11 ? ?
2 0.15 0.13 0.28 0.25 0.19 0.19 911 ? ?

Null 0.20 0.20 0.20 0.20 0.20 0 — 1 x
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“Significant”

Question: Which species is discovered?

m Y1m/nm Y2m/nm Y3m/nm Y4m/nm Y5m/nm β̂m nm l̂FDRm Discover

1 0.36 0.50 0.00 0.07 0.07 -1.09 11 0.29 x

2 0.15 0.13 0.28 0.25 0.19 0.19 911 0.003 X
Null 0.20 0.20 0.20 0.20 0.20 0 — 1 x

Remarks:

f1 is a mixture of normals. Results same for 2,3,4 component densities

BH procedure behaves similarly
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Illustration

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

Local FDR vs. MLEs

βm

lF
D

R
m

What’s happening:

1 Lfdr(zm)→ 0 as nm/abundance→∞ if βm 6= 0.
2 Recall 6 ≤ nm ≤ 911

Consequence: Abundance = association hypothesis RETAINED INCORRECTLY!

See also Sun and McLain (2012)→ Berger and Selke (1987) → Berkson (1938).
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Illustration

“Statistics show that Fred is productive”
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Finite Multinomial Mixture Model

Under log-linear model Y m|Nm = nm ∼ Multinomial(nm, p(βm))

pn(βm) = exp{βmxn}∑N
n=1 exp{βmxn}

Hm : βm = 0⇒ p1 = p2 = ... = pN = 1/N

pmf notation: p(ym|nm;βm)

Prior Pr(βm = γk) = πk for k = 0, 1, ...,K

Null prior: Take γ0 = 0 ⇒ Pr(βm = 0) = Pr(Hm true ) = π0

Mixture of Multinomial pmfs:

p(ym|nm;γ,π) = π0p(ym|nm; 0) + π1p(ym|nm; γ1) + ...+ πKp(ym|nm; γK )
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Oracle and Adaptive clFDR Procedure

Oracle Procedure:

1 Compute clFDRs :

clFDRm ≡
π0p(ym|nm; γ0)

p(ym|nm;γ,π)
= Pr(βm = 0|ym, nm;γ,π)

2 Reject k nulls with smallest clFDR:

k = max

{
m :

m∑
i=1

clFDR(i) ≤ αm

}

Adaptive Procedure:

Plug in ML estimates of π0, π1, ... γ1, γ2, ...

EM algorithm - M step requires iterative procedure

Can update γ̂1, γ̂2, ... one at a time - Newton-Raphson or optim()
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“Significant”

Question: Now which species is discovered?

Local FDR Procedure
m Y1m/nm Y2m/nm Y3m/nm Y4m/nm Y5m/nm β̂m nm l̂FDRm Disc.
1 0.36 0.50 0.00 0.07 0.07 -1.09 11 0.29 x
2 0.15 0.13 0.28 0.25 0.19 0.19 911 0.003 X

Null 0.20 0.20 0.20 0.20 0.20 0 — 1 x

Conditional Local FDR Procedure
m Y1m/nm Y2m/nm Y3m/nm Y4m/nm Y5m/nm β̂m nm ĉlFDRm Disc.
1 0.36 0.50 0.00 0.07 0.07 -1.09 11 0.10, 0.12 X
2 0.15 0.13 0.28 0.25 0.19 0.19 911 1, 1 x

3 component pmfs

4 component pmfs
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Illustration: lFDR vs clFDR
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Theorem 1: FDR controlled - based on Sun and Cai(2009) proof
Theorem 2: [clfdr(z , n) ≤ λ]↘ n for all n ≥ N.
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Advantages of Finite Mixture Model

Computationally feasible / consistent parameter estimation

Flexible: Over-dispersion

Can inspect for practical significance rather than specify it apriori

Don’t have specify ε in Hm : βm ∈ [−ε, ε]
Facilitates follow-up classification analysis if Hm rejected
Facilitates power analysis / estimated effect size

Can reconsider null hypothesis - Efron (2004). Warning: Bickel (2012)
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Why clFDR?
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Q: Should we use this rejection region?

Habiger, Watts and Anderson Multiple Testing with Heterogeneous Data



Ignore Heterogeneity? Procedure Assessment Comments

Why clFDR?
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Q: Should we use this rejection region?

A: See Watts and Habiger (2017).
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Weighted Adaptive FDR Control

Method:

1 Specify weights w(n1),w(n2), ...,w(nM)

“Optimal” weights: w(nm) ↓ nm for large enough nm

2 Compute weighted p-values Qm = Pm/w(nm)

3 Apply adaptive BH procedure to Qms - Storey et. al (2004)

Assessment:

Finite FDR control and asymptotic FDP control (a.s. under weak
dependence)

Procedure is “α-exhaustive” - See Finner (2009)

Optimal weights can be consistently estimated

Simpler weights can be specified (robust)
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