Multiple Testing with Heterogeneous Data

Joshua Habiger¹ David Watts² Michael Anderson³ Oklahoma State University

¹Associate Professor, Department of Statistics ²PhD student, Department of Statistics ³Associate Professor, Department of Plant and Soil Science

August, 2017

Main References

- Habiger, J., D. Watts, and M. Anderson (2017). Multiple testing with heterogeneous multinomial distributions. *Biometrics* 73(2), 562 – 570.
- Habiger, J. (2017). Adaptive False Discovery Rate Control for Heterogeneous Data. Statistica Sinica (in press)

Outline

- Can We Ignore Heterogeneity?
- Proposed Procedure
- Assessment
- Comments

< ∃ >

Background

- Background:
 - Rhizosphere: Area of the soil near roots
 - Rhizosphere microbiome: Microorganisms / bacteria in the rhizosphere
 - Millions of bacteria per gram of soil
 - Standard rhizosphere microbiome study: Who's there / abundant?
 - If we know who's there we can intervene
- Research question (Anderson and Habiger; 2012):
 - Who's there vs. who's **relevant** (associated with plant health/productivity)?
 - Is the abundance = association hypothesis true?

∢ ≣ ▶

Ignore Heterogeneity? Procedure Assessment Comments

Illustration of Research Question

Fred is abundant. Is he "productive"?

⊒ ⊳

Study

- Data collection:
 - S wheat rhizosphere soil samples: Average shoot biomass (g) among wheat plants in each sample measures productivity

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	X_5
0.86	1.34	1.81	2.37	3.00

2 16s rRNA software: # DNA copies of m = 1, 2, ..., 778 species in each sample (abundance)

Species <i>m</i>	y_{1m}	y 2m	Y 3m	Y4m	Y 5m	Total (<i>n</i> _)
1	0	1	1	0	5	7
2	9	2	0	0	3	14
:	÷	÷	÷	:	÷	÷
778	16	10	29	18	13	81

• Remark: $6 \le n_m \le 911$

▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Classical Benjamini and Hochberg (1995)

Step 1: Compute Z-scores / p-values

- Model: $Y_{nm} \sim Pois(\mu_{nm}), log(\mu_{nm}) = \alpha_m + \beta_m x_n$
- Null hypotheses: $H_m : \beta_m = 0$

• Z-scores:
$$Z_m = \frac{\hat{\beta}_m}{S.E.(\hat{\beta}_m)}$$

• *p*-Values:
$$P_m = \Pr(|Z_m| \ge |z_m|)$$

Step 2: Define rejection threshold to control FDR

• Reject k null hypotheses for $k = \max\{i : P_{(i)} \le \alpha \frac{i}{m}\}$

Remark: Much work on adaptive BH procedure: Storey et. al (2004), Nettleton and Liang (2012)

ヨト イヨト - ヨ

Ignore Heterogeneity? Procedure Assessment Comments

Bayes - Sun and Cai (2007), Efron (2010)

Step 1: Compute / estimate posterior null probability

- Mixture model: $Z_m \sim f(z) = \pi_0 f_0(z) + (1 \pi_0) f_1(z)$
- Local FDR: $IFDR(z) = \frac{\pi_0 f(z)}{f(z)} = \Pr(H_m \text{ true } |Z_m = z)$
- Local FDR statistics: $IFDR_m = IFDR(Z_m)$
- Adaptive: $\hat{\pi}_0, \hat{f}_1 \rightarrow \widehat{IFDR}_m$

Step 2: Define a rejection threshold

• Reject k null hypotheses for $k = \max \left\{ m : \sum_{i=1}^{m} \widehat{IFDR}_{(i)} \le \alpha m \right\}$

▶ ★ 国 ▶

Question: Which species is discovered?

m	Y_{1m}/n_m	Y_{2m}/n_m	Y_{3m}/n_m	Y_{4m}/n_m	Y_{5m}/n_m	$\hat{\beta}_m$	n _m	IFDR _m	Discover
1	0.36	0.50	0.00	0.07	0.07	?	?	?	?
2	0.15	0.13	0.28	0.25	0.19	?	?	?	?
Null	0.20	0.20	0.20	0.20	0.20	0	_	1	x

★ 문 ► 문

Question: Which species is discovered?

m	Y_{1m}/n_m	Y_{2m}/n_m	Y_{3m}/n_m	Y_{4m}/n_m	Y_{5m}/n_m	$\hat{\beta}_m$	n _m	IFDR _m	Discover
1	0.36	0.50	0.00	0.07	0.07	-1.09	?	?	?
2	0.15	0.13	0.28	0.25	0.19	0.19	?	?	?
Null	0.20	0.20	0.20	0.20	0.20	0		1	x

★ 문 ► 문

Question: Which species is discovered?

m	Y_{1m}/n_m	Y_{2m}/n_m	Y_{3m}/n_m	Y_{4m}/n_m	Y_{5m}/n_m	$\hat{\beta}_m$	n _m	IFDR _m	Discover
1	0.36	0.50	0.00	0.07	0.07	-1.09	11	?	?
2	0.15	0.13	0.28	0.25	0.19	0.19	911	?	?
Null	0.20	0.20	0.20	0.20	0.20	0	_	1	x

★ E ▶ E

Question: Which species is discovered?

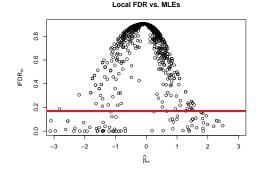
m	Y_{1m}/n_m	Y_{2m}/n_m	Y_{3m}/n_m	Y_{4m}/n_m	Y_{5m}/n_m	$\hat{\beta}_m$	n _m	IFDR _m	Discover
1	0.36	0.50	0.00	0.07	0.07	-1.09	11	0.29	x
2	0.15	0.13	0.28	0.25	0.19	0.19	911	0.003	\checkmark
Null	0.20	0.20	0.20	0.20	0.20	0	_	1	х

Remarks:

- f_1 is a mixture of normals. Results same for 2,3,4 component densities
- BH procedure behaves similarly

< ∃ >

Illustration



• What's happening:

1 *Lfdr*(z_m) \rightarrow 0 as n_m /abundance $\rightarrow \infty$ if $\beta_m \neq 0$. **2** Recall $6 < n_m < 911$

• Consequence: Abundance = association hypothesis RETAINED INCORRECTLY!

• See also Sun and McLain (2012) \rightarrow Berger and Selke (1987) \rightarrow Berkson (1938).

Illustration

"Statistics show that Fred is productive"

Finite Multinomial Mixture Model

• Under log-linear model $\boldsymbol{Y}_m | N_m = n_m \sim Multinomial(n_m, \boldsymbol{p}(\boldsymbol{\beta_m}))$

•
$$p_n(\beta_m) = \frac{\exp\{\beta_m x_n\}}{\sum_{n=1}^N \exp\{\beta_m x_n\}}$$

- $H_m: \beta_m = 0 \Rightarrow p_1 = p_2 = ... = p_N = 1/N$
- pmf notation: $p(y_m | n_m; \beta_m)$

• Prior
$$\Pr(\beta_m = \gamma_k) = \pi_k$$
 for $k = 0, 1, ..., K$

- Null prior: Take $\gamma_0 = 0 \Rightarrow \Pr(\beta_m = 0) = \Pr(H_m \text{ true }) = \pi_0$
- Mixture of Multinomial pmfs:

 $p(\boldsymbol{y}_m|\boldsymbol{n}_m;\boldsymbol{\gamma},\boldsymbol{\pi}) = \pi_0 p(\boldsymbol{y}_m|\boldsymbol{n}_m;\boldsymbol{0}) + \pi_1 p(\boldsymbol{y}_m|\boldsymbol{n}_m;\boldsymbol{\gamma}_1) + \ldots + \pi_K p(\boldsymbol{y}_m|\boldsymbol{n}_m;\boldsymbol{\gamma}_K)$

< ∃ >

Oracle and Adaptive cIFDR Procedure

Oracle Procedure:

Compute clFDRs :

$$cIFDR_m \equiv \frac{\pi_0 p(\boldsymbol{y}_m | \boldsymbol{n}_m; \gamma_0)}{p(\boldsymbol{y}_m | \boldsymbol{n}_m; \gamma, \pi)} = \Pr(\beta_m = 0 | \boldsymbol{y}_m, \boldsymbol{n}_m; \gamma, \pi)$$

2 Reject k nulls with smallest cIFDR:

$$k = \max\left\{m: \sum_{i=1}^{m} clFDR_{(i)} \leq \alpha m\right\}$$

Adaptive Procedure:

- Plug in ML estimates of $\pi_0, \pi_1, ..., \gamma_1, \gamma_2, ...$
- EM algorithm M step requires iterative procedure
 - Can update $\hat{\gamma}_1, \hat{\gamma}_2, ...$ one at a time Newton-Raphson or optim()

Question: Now which species is discovered?

Local FDR Procedure

m	Y_{1m}/n_m	Y_{2m}/n_m	Y_{3m}/n_m	Y_{4m}/n_m	Y_{5m}/n_m	$\hat{\beta}_m$	n _m	IFDR _m	Disc.
1	0.36	0.50	0.00	0.07	0.07	-1.09	11	0.29	х
2	0.15	0.13	0.28	0.25	0.19	0.19	911	0.003	\checkmark
Null	0.20	0.20	0.20	0.20	0.20	0		1	х

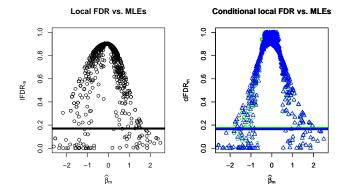
Conditional Local FDR Procedure

m	Y_{1m}/n_m	Y_{2m}/n_m	Y_{3m}/n_m	Y_{4m}/n_m	Y_{5m}/n_m	$\hat{\beta}_m$	n _m	\widehat{cIFDR}_m	Disc.
1	0.36	0.50	0.00	0.07	0.07	-1.09	11	0.10 , 0.12	\checkmark
2	0.15	0.13	0.28	0.25	0.19	0.19	911	1 , 1	x

- 3 component pmfs
- 4 component pmfs

< 三→ □

Illustration: IFDR vs cIFDR

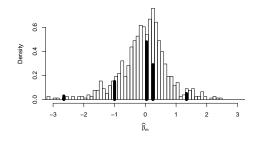


Theorem 1: FDR controlled - based on Sun and Cai(2009) proof Theorem 2: $[clfdr(z, n) \le \lambda] \searrow n$ for all $n \ge N$.

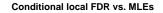
Ignore Heterogeneity? Procedure Assessment Comments

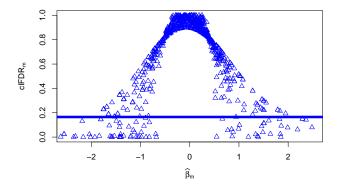
Advantages of Finite Mixture Model

- Computationally feasible / consistent parameter estimation
- Flexible: Over-dispersion
- Can inspect for practical significance rather than specify it apriori
 - Don't have specify ϵ in H_m : $\beta_m \in [-\epsilon, \epsilon]$
 - Facilitates follow-up classification analysis if H_m rejected
 - Facilitates power analysis / estimated effect size
- Can reconsider null hypothesis Efron (2004). Warning: Bickel (2012)



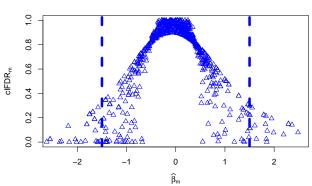
Why cIFDR?





Q: Should we use this rejection region?

Why clFDR?



Conditional local FDR vs. MLEs

- Q: Should we use this rejection region?
- A: See Watts and Habiger (2017).

Weighted Adaptive FDR Control

Method:

- **()** Specify weights $w(n_1), w(n_2), ..., w(n_M)$
 - "Optimal" weights: $w(n_m) \downarrow n_m$ for large enough n_m
- 2 Compute weighted *p*-values $Q_m = P_m/w(n_m)$
- **③** Apply adaptive BH procedure to Q_ms Storey et. al (2004)

Assessment:

- Finite FDR control and asymptotic FDP control (a.s. under weak dependence)
- Procedure is " α -exhaustive" See Finner (2009)
- Optimal weights can be consistently estimated
- Simpler weights can be specified (robust)

< ∃ >

Some References

Anderson, M. and J. Habiger (2012). Characterization and identification of productivity-associated rhizobacteria in wheat. Applied and Environmental Microbiology 78(12), 4434 – 444.

Cai, T and Sun, W. (2009). Simultaneous Testing of Grouped Hypotheses: Finding Needels in Multiple Haystacks. Journal of the American Statistical Association 104(488), 673–687.

Efron, B. (2010). Large-Scale Inference. Cambridge: Cambridge University Press.

Habiger, J., D. Watts, and M. Anderson (2017). Multiple testing with heterogeneous multinomial distributions. *Biometrics* 73(2), 562 – 570.

Habiger, J. (2017). Adaptive False Discovery Rate Control for Heterogeneous Data. Statistica Sinica (in press)

Sun, W. and T. T. Cai (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102(479), 901–912.

Sun, W. and A. C. McLain (2012). Multiple testing of composite null hypotheses in heteroscedastic models. *Journal of the American Statistical Association* 107(498), 673–687.

Watts and Habiger (2017). A New Multiple Testing Protocol for Exploratory Data Analysis and the Local Misclassification Rate. Communications in Statistics(in press)

医下 不臣下